AP Chemistry - Day 17 10.07.14
Objective: SWBAT explain the rates of reactions through mathematical representations.

Agenda:

1) Review Exam -corrections - due Thursday
2) Kinetics Notes
3) Practice Problem
4) POGIL-Kinetics - due Thursday

Corrections

$$
\begin{aligned}
& \text { Number } \rightarrow \text { Your Org. } \rightarrow \text { Correct } \rightarrow \text { Reason }
\end{aligned}
$$

a)

$$
\begin{aligned}
& P_{\mathrm{O}_{2}}=? \\
& P_{\text {ToTAL }}=P_{\mathrm{H}_{2} \mathrm{O}}+P_{\mathrm{O}_{2}} \\
& 762.6 \text { tor }=21.6 \text { torr }+P_{\mathrm{O}_{2}} \quad \frac{1}{1 / 2}=2 \\
& P_{\mathrm{O}_{2}}=741.0 \text { torr }
\end{aligned}
$$

b) $P V=n R T$

$$
n=\frac{P V}{R T}
$$

$$
P=741.0 \text { tor }
$$

$$
\begin{aligned}
& V=.1824 \mathrm{~L} \\
& n=n
\end{aligned}
$$

$$
n=\frac{(741.0)(.1824 x)}{\left(62.3 \frac{3}{m_{0} \cdot x} \cdot k\right)(296.6 K)}
$$

$$
\begin{aligned}
& n=n \\
& R=62.3 \mathrm{~L} \operatorname{tar} / \mathrm{Mol} \cdot \mathrm{~K}
\end{aligned}
$$

$$
n=7.316 \times 10_{\text {mols }}^{-3}
$$

$$
T=23.4^{\circ} \mathrm{C}+273.15 \mathrm{~K}=296.6 \mathrm{~K}
$$

c)

$$
\begin{aligned}
& \mathrm{mols} \mathrm{O}_{2} \rightarrow \mathrm{mols} \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{gH}_{2} \mathrm{O}_{2} \\
& 7.316 \times 10^{-3} \mathrm{molsO} 2 \times \frac{2 \mathrm{molliN}_{2}}{1 \mathrm{molO}_{2}} \times \frac{34.01 / 2 \mathrm{~g}}{1 \mathrm{~mol} 1 \mathrm{H}_{2}}=0.497 \mathrm{~g} \\
& \mathrm{H}_{2} \mathrm{O}_{2}
\end{aligned}
$$

d) $\frac{0.497 \mathrm{~g}}{6.951 \mathrm{~g}}=7.15 \%$
e) $\begin{aligned} & { }^{1}+1 \\ & \mathrm{H}_{2} \mathrm{O}_{2} \\ & +2\end{aligned}=0=-1 \quad O_{2}=\nabla$

$$
\text { f) } \underset{+2-2}{\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})} \rightarrow \underset{\mathrm{O}, \mathrm{O}_{2(\mathrm{~g})}+2 \mathrm{H}^{+}}{+2}+2 e^{-}
$$

Kinetics $=$ rate of chemical reactions

$$
A+B \rightarrow A B
$$

1) $\left|\begin{array}{ll}A A & B_{B} \\ A A & B_{B}\end{array}\right|$ - Rates are affected by:
$A \mathbb{A} B_{B}$
(1) Temperature
(2) $E_{A C T}=$ activation energy
2) $A \quad B$
(3) Concentration
$\frac{\|}{A B}{ }^{b}$
(5) Surface Area
(6) Catalyst -lower activation en er

- We look at rates through concentration - but can also look at pressure.

$A+B \rightarrow C+D$
rate $=K[A][B]^{2}={ }^{0} 0$ overall $3^{\text {ned }}$ order
order $A=1^{\text {st }}-\underset{\substack{\text { rate is a affected } \\ \text { portionally } \\ \text { by }}}{\text { and }}$
order $B=2$ nd

1) $K[1][1]^{2}=$ rate
2) $K[1][2]^{2}=$ rate

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{Cl}_{2} \rightarrow \mathrm{Na}^{+1}+\mathrm{Cl}^{-1} \\
.250 \mathrm{M}]=\mathrm{NaCl} \rightarrow \mathrm{Cl}^{-}=[.250 \mathrm{M}]
\end{array} \\
& \begin{aligned}
\frac{.250 \mathrm{mols}}{L} \times 0.025 \mathrm{~L} & =6.25 \times 10^{-3} \mathrm{~mol} \\
\mathrm{Cl} & =\mathrm{Cl}_{2}
\end{aligned}
\end{aligned}
$$

ii)

$$
\begin{array}{ll}
P=.950 \mathrm{~atm} & V=\mathrm{Cl}_{2} \\
V=V=n R T \\
n=3.125 \times 10^{-3} \mathrm{~mol} & P V=n R T \\
R=0.0821 \mathrm{a} \cdot \mathrm{amm} / \mathrm{mok} & V=\frac{n R T}{P} \\
T=295 \mathrm{~K} &
\end{array}
$$

$$
\begin{aligned}
& \frac{2.25 \times 10^{-8}}{2.03 \times 10^{77}}=\frac{[0.0107]^{x}}{[0.0312]^{x}} \\
& 0.1108=1 / 3^{x} \\
& 1 / 9=1 / 3^{x} \\
& 9=3^{x} \quad x=2
\end{aligned}
$$

c) irate $=\mathrm{K}\left[\mathrm{Cl}^{-}\right]^{2}\left[\mathrm{MnO}_{9}\right]^{7}\left[\mathrm{H}^{+}\right]^{3}$
ii) Trial 1

$$
\begin{gathered}
\frac{2.25 \times 10^{-8} \frac{M}{S}}{[0.0104]}=\frac{K[0.0109 M]^{2}\left[0004 M[3.00]^{3}\right.}{[0.0104 M]^{2}[0.00+M][3.001 M]^{3}} \\
\frac{M}{S}=K M \cdot M \cdot M^{3}=\frac{K \cdot M^{6}}{M^{6}}=\frac{K T}{5} / M^{65} \\
K=\frac{1}{M^{5} \cdot 5}
\end{gathered}
$$

\qquad

